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Although n3-complexes of cyclopentadienyl (Cp), indenyl (Ind), 
and related ligands are postulated intermediates in thermal2 and 
photochemical3 reactions, the structurally characterized examples 
are limited to (r>3-fluorenyl)(j?5-fluorenyl)ZrCl2,

4 (j?3-Ind)(?j5-
Ind)W(CO)2 ,5 (»,3-Cp)(7;5-Cp)W(CO)2,6 and (773-Ind)Ir-
(PMe2Ph)3.7 An 773-phenalenyl complex of Pd has been char­
acterized recently by NMR methods.8 Casey and O'Connor9 

described the formation of (7)1-Ind)Re(CO)3(PMe3)2 from (TJ5-
Ind)Re(CO)3; however, an i?3-Ind intermediate was not observed. 
None of these systems contain a first-row transition metal or are 
odd-electron species. 

Recently we found10 that CO substitution in (77-C5Me5J2V(CO) 
obeys a second-order rate law. The mechanism for the bimolecular 
reaction may involve a 19-electron complex (as posulated" for 
substitution reactions of other metal radicals), an 18-electron 
complex with the unpaired electron localized on the carbocycle12 

ligand, or a 17-electron complex containing an ri3-C5Me5 group, 
as postulated2 for substitution reactions of 18-electron complexes 
that contain cyclopentadienyl ligands. Since the T75 —» T73 —• r;5 

mechanism would be expected to show rate enhancement via the 

(1) (a) Northwestern University, (b) University of Delaware, (c) Univ­
ersity of California at San Diego. 

(2) (a) Schuster-Woldan, H. G.; Basolo, F. / . Am. Chem. Soc. 1966, 88, 
1657. (b) Cramer, R.; Seiwell, L. P. J. Organomet. Chem. 1975, 92, 245. (c) 
Rerek, M. E.; Ji, L. N.; Basolo, F. Organometaliics 1984, 3, 740. (d) 
Hart-Davis, A. J.; Mawby, R. J. J. Chem. Soc. A 1969, 2403. (e) White, C; 
Mawby, R. J.; Hart-Davis, A. J. lnorg. Chim. Acta 1970, 4, 441. (f) Rerek, 
M. E.; Basolo, F. Organometaliics 1983, 2, 372. (g) Yang, G. K.; Bergman, 
R. G. Ibid. 1985, 4, 129. (h) Casey, C. P.; Jones, W. D. J. Am. Chem. Soc. 
1980, /02,6154. 

(3) Rest, A. J.; Whitewell, I.; Graham, W. A. G.; Hoyano, J. K.; 
McMaster, A. D. J. Chem. Soc, Chem. Commun. 1984, 624. 

(4) Kowala, C; Wunderlich, J. A. Acta Crystallogr., Sect. B 1976, B32, 
820. 

(5) Nesmeyanov, A. N.; Ustynyuk, N. A.; Makarova, L. G.; Andrianov, 
V. G.; Stri'chkov, Yu. T.; Andrae, S.; Ustynyuk, Yu. A.; Malyugina, S. G. 
J. Organomet. Chem. 1978, 159, 189. 

(6) Huttner, G.; Brintzinger, H. H.; Bell, L. G.; Friedrich, P.; Benjenke, 
V.; Neugebauer, D. J. Organomet. Chem. 1978, 145, 329. 

(7) Merola, J. S.; Kacmarcik, R. T.; Van Engen, D. / . Am. Chem. Soc. 
1986, 108, 329. 

(8) Nakasuji, K.; Yamaguchi, M.; Murata, I.; Tatsumi, K.; Nakamura, 
A. Organometaliics 1984, 3, 1257. 

(9) Casey, C. P.; O'Connor, J. M. Organometaliics 1985, 4, 384. 
(10) Kowaleski, R. M.; Trogler, W. C; Basolo, F. Gazz. Chim. Ital., in 

press. 
(11) (a) Brown, T. L. Ann. N. Y. Acad. Sci. 1980, 333, 80. (b) Kochi, J. 

K. "Organometallic Mechanisms and Catalysis"; Academic Press: New York, 
1978. (c) Lappert, M. F.; Lendor, P. W. Adv. Organomet. Chem. 1976, 14, 
345. (d) Hershberger, J. W.; Klingler, R. J.; Kochi, J. K. J. Am. Chem. Soc. 
1983,105, 61. (e) Hershberger, J. W.; Klingler, R. J.; Kochi, J. K. Ibid. 1982, 
104, 3034. (0 Zizelman, P. M.; Amatore, C; Kochi, J. K. Ibid. 1984, 106, 
3771. (g) Stiegman, A. E.; Goldman, A. S.; Leslie, D. B.; Tyler, D. R. J. 
Chem. Soc, Chem. Commun. 1984, 632. (h) Shi, Q.-Z.; Richmond, T. G.; 
Trogler, W. C; Basolo, F. J. Am. Chem. Soc. 1982, 104, 71. (i) Richmond, 
T. G.; Shi, Q.-Z.; Trogler, W. C; Basolo, F. Ibid. 1982, 104, 76. Q) 
McCullen, S. B.; Walker, H. W.; Brown, T. L. Ibid. 1982, 104, 4007. (k) 
Doxsee, K. M.; Grubbs, R. H.; Anson, F. C. Ibid. 1984, 106, 7819. (1) 
Narayanan, B. A.; Kochi, J. K. J. Organomet. Chem. 1984, 272, C49. (m) 
Fox, A.; Malito, J.; Poe, A. J. Chem. Soc, Chem. Commun. 1981, 1052. (n) 
Herrinton, T. R.; Brown, T. L. J. Am. Chem. Soc. 1985, 107, 5700. (0) 
Goldman, A. S.; Tyler, D. R. Ibid. 1984, 106, 4066. (p) Therien, M. J.; Ni, 
C. L.; Osteryoung, J.; Anson, F.; Trogler, W. C. J. Am. Chem. Soc, in press. 

(12) Blaha, J. P.; Wrighton, M. S. J. Am. Chem. Soc. 1985, 107, 2694. 

Figure 1. Thermal ellipsoid diagram and labeling scheme (note: C(I), 
adjacent to C(2), is not labeled because of a lack of space) for di-
carbonyl(7j3-indenyl)(?;5-indenyl)vanadium(II). 

indenyl effect,2" we investigated the reaction between (r75-Ind)2V
13 

and carbon monoxide. The 7/5-Cp and 77'-C5Me5 analogues are 
known14,15 to form stable monocarbonyl adducts. Exposing a 
hexane solution of (?)5-Ind)2V to 1 atm of CO led to the immediate 
appearance of two absorptions at 1978 and 1926 cm"1 in the IR 
spectrum. This suggested formation of a dicarbonyl complex 
(i73-Ind)(775-Ind)V(CO)2 (A), similar to the 18-electron tungsten 
analogue.5 No absorption was detected in the region expected 
for a monocarbonyl adduct (e.g., (T75-Cp)2VCO absorbs15 at 1881 
cm"1). The solution EPR spectrum snowed an eight-line signal 
from vanadium hyperfine splitting (giso = 1.9835, Ah0 = 47 G) 
that is typical of 17-electron vanadium complexes. This suggests 
that the unpaired electron is not localized on the carbocycle ligand. 
Solutions of the dicarbonyl complex are sensitive to air and heating; 
they revert to the parent metallocene in vacuo. On warming these 
solutions under a CO atmosphere, an idenyl ligand was lost to 
form the known species16 (^5-Ind)V(CO)4. 

By cooling a hexane solution of A, dark green crystals were 
obtained in 70% yield whose crystal and molecular structure 
(Figure 1) were determined17 by X-ray diffraction. The structure 
shows pseudooctahedral coordination geometry about vanadium 
with OC-V-COZ = 85.8 (I)0 and both C-O = 1.145 (4) A. The 
?)3-Ind group contains three short V-C bonds (V-C(IO) = 2.379 
(3) A, V-C(Il) = 2.184 (3) A, V-C(12) 2.359 (3) A) and two 
nonbonding or weakly bonding V-C distances (V-C(13) = 2.857 
(3) A and V-C(18) = 2.876 (3) A). The C-C bond distances 
in the five-membered ring show evidence of an allyl-ene distortion: 
C(IO)-C(Il) = 1.403 (6) A; C(ll)-C(12) = 1.404 (6) A; C-
(12)-C(13) = 1.457 (5) A; C(10)-C(18) = 1.453 (4) A; C-
(13)-C(18) = 1.415 (5) A. For the 175-Ind ring there is a slight 
slippage18'19 toward the 773-structure: V-C(I) = 2.261 (3) A, 
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Table I. Slip Parameters" for (y-Ind)()j5-Ind)V(CO)2 (A) and 
(IP-Cp)(V-Cp)W(CO), (B) 

complex 

A, »)5-Ind 
V-Ind 

B, „5-Cp 
13-Cp 

A = \S\, A 

0.157 
0.798 
0.076 
0.928 

a, deg 

0.0 
1.5 
0.0 
0.0 

ip, deg 

4.6 
20.9 

2.2 
23.4 

AM-C 

0.13 
0.56 
0.10 
0.62 

"Parameters are defined in ref 18 and 19. ISI represents the slippage 
distance of the ring centroid from the projection of the metal atom on 
the ring, a is the angle between the S vector and the vector from the 
ring centroid to the unique "allyl" carbon, yp is the angle between the 
normal to the plane and the centroid-metal vector, and AM-C is the 
difference between the average of the metal carbon distances to the 
"allyl" and "ene" carbons. 

V-C(2) = 2.237 (3) A, V~C(3) = 2.272 (3) A, while V-C(4) = 
2.386 (3) A and V-C(9) = 2.388 (3) A. Faller, Crabtree, and 
Habib18 have compared slippage parameters for known indenyl 
and cyclopentadienyl structures. Slip parameters for A and 
(r;3-Cp)(7)5-Cp)W(CO)2,

18 B, are compared in Table I. Complex 
A represents a less extreme case than B but shows significantly 
more slippage than known ?75-systems (A < 0.3).18 

Even though complex A is expected to be more crowded than 
the isostructural tungsten5 species, distortion of the ?73-Ind group 
from planarity is small. The dihedral angle between the ?;3-carbons 
and the remaining carbon atoms of the »)3-Ind group for A is 12.0 
(3)° in contrast to that of 26° for5 (j;3-Ind)(i;5-Ind)W(CO)2 or 
28° for8 (773-Ind)Ir(PMe2Ph)3. Similar to these structures, the 
apex atom, C(11), of the *j3-fragment is 0.2 A closer to the metal 
than the remaining carbons. Distances from the ^-fragment to 
V(II) in this complex are shorter (by ~0.08 A) than in (?j3-
Ind)(j)5-In)W(CO)2.5 Two of the V-C(allyl) distances are 
equivalent to those in (r;3-Ind)Ir(PMe2Ph)3; however, the apex 
atom in the Ir system is only 2.047 (8) A from the metal. The 
greater planarity of the indenyl ring in A, the reduced value of 
A, and the long, but perhaps weakly interacting V-C(13) and 
V-C(18), distances suggest that the ene portion of the ?;3-ring 
donates weakly to vanadium thereby reducing the electron de­
ficiency at the 17-electron center. If the unpaired electron is 
localized toward the ene fragment then a 3-center-3-electron bond 
may begin to form analogous to the 2-center-3-electron bond 
postulated1 lh to explain the facile associative substitution pathway 
in 17-electron carbonyl complexes. 

These results provide crystallographic evidence that first-row 
metals can support the slipped ^-structure that has previously 
been structurally characterized for 18-electron complexes of 
heavier metals. For the first time ring slippage has been shown 
for a metal radical. These results further suggest that the 17-
electron systems Cp2VCO and (775-C5Me5)2VCO, which substitute 
CO by a bimolecular process, may involve a 17-electron transition 
state or intermediate that contains a slipped ring. The question 
of whether 19-electron intermediates or 17-electron intermediates 
containing a slipped 773-ring (or both) are present in reactions of 
metal cyclopentadienyl radicals remains to be answered. 
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We report a new mechanism for inversion of tricoordinate 
pyramidal pnictogens, 8-Pn-3 (Pn = P, As, Sb). Classical inversion 
of these species is believed to proceed through a trigonal-planar 
transition state. The recent synthesis1"3 of molecules containing 
a planar T-shaped pnictogen (1) suggests that similar geometries 
could be involved in inversions at some 8-Pn-3 centers. 

1 
The classical inversion barrier at pyramidal phosphorus is ex­

pected to be quite high with electronegative substituents. The 
inversion barrier in PH3 is calculated as 42.1 kcal/mol with a 
double- f + d(P) basis set, whereas the barrier for PH2F is cal­
culated as 62.1 kcal/mol.43 Calculations on planar Dih PF3 reveal 
that the lone pair is not in a 3p orbital (a2") but rather is in an 
a / orbital with a 3s component.4b'5 On the basis of ab initio 
calculations described below, we propose that with appropriate 
electronegative substituents, the pyramidal phosphorus species (and 
by analogy heavier pnictogens) will invert through an approximate 
T-shaped transition state (or intermediate). 

Calculations were performed at the SCF level6 with a polarized 
double-f basis set.7 All geometries were gradient-optimized in 
the appropriate symmetry. 

Calculations were done for the successive fluorination of 
phosphine: PH3, PH2F, PHF2, PF3. The optimum geometries 
for the pyramidal (A), planar "Dih" (B), and planar "T-shaped" 
(C) structures are given in Table I. Our calculated structures 
are in good agreement with the experimental geometries for py­
ramidal PH3, PHF2, and PF3.8"10 Good agreement for the py-

* In this paper the periodic group notation in parentheses is in accord with 
recent actions by IUPAC and ACS nomenclature committees. A and B 
notation is eliminated because of wide confusion. Groups IA and IIA become 
groups 1 and 2. The d-transition elements comprise groups 3 through 12, and 
the p-block elements comprise groups 13 through 18. (Note that the former 
Roman number designation is preserved in the last digit of the new numbering: 
e.g., Ill — 3 and 13.) 
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